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Outline 

• LCLS-II Project Overview 

• Accelerator Components and Engineering Challenges 

• Future Outlook  

 



LCLS Timeline 
1992: Proposal (Pellegrini), Study Group(Winick) 

1996: Design Study Group (M. Cornacchia) 

1998: LCLS Design Study Report   

1994: National Academies Report   

1997: BESAC (Birgeneau) Report  

1999:  BESAC (Leone) Report   

2001: DOE Critical Decision 0  

2003: DOE Critical Decision 2A 

2002: LCLS Conceptual Design Report and  DOE Critical Decision 1 

2006: DOE Critical Decision 3B 

2005: DOE Critical Decision 2B and 3A 

2000: LCLS-First Experiments (Shenoy & Stohr)  

2004: DOE 20-Year Facilities Roadmap 

2009: First Light, 10 April 2009 

2009: First Light to First Instrument August 19 2009 

2009: First Instrument Commissioned September 12, 2009 

2010: LCLS CD-4 June 2010 

2012: Final Instrument Commissioned April 4, 2012 

2011: LCLS-II Critical Decision 1 Review April 26, 2011 

2009: LCLS-II Critical Decision 0 

2011: LCLS-II Critical Decision 3a Review Dec 6, 2011 

2012: LCLS-II Critical Decision 2 Review Aug 21, 2012 

2013: BESAC Subcommittee Report July 25, 2013  

2014: LCLS-II Critical Decision 1 Review Feb 4, 2014 

2015: LCLS-II Critical Decision 2 Review Feb  2015 ? 

2014: LCLS-II CD1 Aug 22, 2014 
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Linac Coherent Light Source II – phase1  

Injector @ 

1-km point 

Sectors 10-20 of 

Linac (1 km) 

(with modifications) 

X-ray Transport 

Optics/Diagnostics 

New Underground Experiment Hall 

Bypass LCLS Linac 

In PEP Xport Line 

(extended) 

New Beam Transport 

Hall 

SXR, HXR Undulators 

s5 



6 

BESAC Subcommittee Report: July 25, 2013 

• Committee report & presentation to BESAC: 

• “It is considered essential that the new light source have the pulse 

characteristics and high repetition rate necessary to carry out a 

broad range of coherent “pump probe” experiments, in addition to 

a sufficiently broad photon energy range (at least ~0.2 keV to 

~5.0 keV)” 

• “It appears that such a new light source that would meet the 

challenges of the future by delivering a capability that is beyond 

that of any existing or planned facility worldwide is now within 

reach.  However, no proposal presented to the BESAC light 

source sub-committee meets these criteria.”  

• “The panel recommends that a decision to proceed toward a new 

light source with revolutionary capabilities be accompanied by a 

robust R&D effort in accelerator and detector technology that will 

maximize the cost-efficiency of the facility and fully utilize its 

unprecedented source characteristics.” 
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http://science.energy.gov/~/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
http://science.energy.gov/~/media/bes/besac/powerpoint/20130725/Hemminger_Presentation_July25.pptx


Project Collaboration 

• 50% of cryomodules: 1.3 GHz        

• Cryomodules: 3.9 GHz 

• Cryomodule engineering/design 

• Helium distribution                            

• Processing for high Q (FNAL-invented gas doping) 

 

• 50% of cryomodules: 1.3 GHz  

• Cryoplant selection/design          

• Processing for high Q 

 

• Undulators         

• e- gun & associated injector systems   

 

 

 

• Undulator Vacuum Chamber 

• Also supports FNAL w/ SCRF cleaning facility 

• Undulator R&D: vertical polarization  

  

 

 

• R&D planning, prototype support 

• processing for high-Q (high Q gas doping) 

• e- gun option 
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A New LCLS-II Project  Redesigned in Response to BESAC 

 

 

 

 

Accelerator Superconducting linac: 4 GeV 

Undulators in existing 

LCLS-I Tunnel 

New variable gap (north)  

New variable gap (south), replaces existing fixed-gap und.  

Instruments Re-purpose existing instruments (instrument and detector 

upgrades needed to fully exploit) 

Total Project Cost $965M 

VG HXR Undulator Source: 

1.0 - 25 keV (120 Hz, copper” linac ) 
1.0 - 5 keV (≥100 kHz, SC Linac) 

4 GeV SC Linac                

In sectors 0-10                  

NEH FEH 

 

Continue use of 14 GeV  

LCLS linac  

VG SXR Undulator Source: 
0.2-1.3 keV (≥ 100kHz) 

MEDSI 2014, Melbourne 



LCLS-II Accelerator Design - Plan for rapid construction 

• New linac based on 1.3 GHz SCRF with MHz beam rate 

- 1.3 GHz technology well established around the world 

- Similar to LCLS with laser heater, harmonic linearizer and dual 

bunch compressor (and option for third compressor at linac end) 

- Link into existing LCLS beamlines 

• Dual variable gap hybrid undulators to cover energy range 

- Self-seeding in both HXR and SXR undulators with options for 

additional photon phase space control 

• Leverage partner labs and extensive work on NGLS, NLS, 

EU-XFEL, ILC and LCLS-IIPhase I to develop conceptual 

design 

- Project definition occurred very rapidly (fall of 2013) 
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LCLS-II Accelerator Layout and Modifications 

 

 

 

 
• New Injector, SCRF linac, and extension installed in Sectors 0-10 

• Use existing Bypass line from Sector 10  Beam Switch Yard (BSY) 

• Re-use existing high power dump in BSY and add magnetic    

kicker to direct beams to dump, SXR, or HXR 

• Re-use existing transfer line (LTU) to HXR; modify HXR dump 

• Construct new LTU to SXR and new dump line 

HXU 

SXU Sec. 21-30 Sec. 11-20 

0.2-1.3 keV (0.1-1 MHz) 

SCRF 

4 GeV 1-25 keV (120 Hz) 
1-5 keV (0.1-1 MHz) 

LCLS-I Linac 
2.5-15 GeV 

proposed 
FACET-II LCLS-II Linac 
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Linac Coherent Light Source II  
Injector @ 

0-km point 

X-ray Transport 

Optics/Diagnostics 

Bypass LCLS Linac 

In PEP Xport Line 

(extended) 

SXR, HXR Undulators 

s11 

Near Experiment Hall 

Far Experiment Hall 

SCRF Linac 

 sector 0-10 



LCLS-II (SCRF) Baseline Parameters 

Parameter symbol nominal range units 

Electron Energy Ef 4.0 2.0 - 4.14 GeV 

Bunch Charge Qb 100 10 - 300 pC 

Bunch Repetition Rate in Linac fb 0.62 0 - 0.93 MHz 

Average e- current in linac Iavg 0.062 0.0 - 0.3 mA 

Avg. e- beam power at linac end Pav 0.25 0 - 1.2 MW 

Norm. rms slice emittance at undulator ge-s 0.45 0.2 - 0.7  m 

Final peak current (at undulator) Ipk 1000 500 - 1500 A 

Final slice E-spread (rms, w/heater) Es 500 125 - 1500 keV 

RF frequency fRF 1.3 - GHz 

Avg. CW RF gradient (powered cavities) Eacc 16 - MV/m 

Avg. Cavity Q0 Q0 2.7e10 1.5 - 5e10 - 

Photon energy range of SXR (SCRF) Ephot - 0.2 - 1.3 keV 

Photon energy range of HXR (SCRF) Ephot - 1 - 5 keV 

Photon energy range of HXR (Cu-RF) Ephot - 1 - 25 keV 12 
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LCLS-II SASE Performance: 

Photons/Pulse                                     Average Brightness 
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SC Linac: Photon Energy Range (eV) 
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 SASE and Seeding - Building on LCLS Experience 

 Hard X-Ray Source: 

 1-5 keV w/ 4 GeV SC linac 

 Up to 25 keV with LCLS Cu Linac 

 Soft X-Ray Source: 

 250 eV-1.3 keV w/ 4 GeV linac 

 200 eV requires <4 GeV  

Cu Self Seeded 

High Rep Rate SASE  

Self Seeded (Grating) 

Cu SASE 

Photon Energy (keV) 

0  5 10 15 20 25 

SC Linac 
High Rep Rate 

Cu Linac 
 

Legend 
 

4.0 GeV 
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Injector Baseline Layout  
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• CW (up to 1 MHz), 0.4 µm emittance @100pC 

• Major injector components: 

- NC 185.7 MHz RF gun 

- Cs2Te cathode; UV/IR lasers for cathode/laser heater 

- NC 1.3 GHz buncher; two solenoids 

- SC 1.3 GHz 8-cavity CM (energy up to 100 MeV) 
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The LBNL VHF RF Gun 

• Based on mature and reliable normal-conducting RF and mechanical technologies. 

The Berkeley normal-conducting scheme satisfies 

and often overcomes all the X-FEL requirements.  

K. Baptiste, et al, NIM A 599, 9 (2009) 

J. Staples, F. Sannibale, S. Virostek, CBP Tech Note 366, Oct. 2006 

• At the VHF frequency, the cavity structure is large enough to withstand the heat load 

and operate in CW mode at the required gradients.  

• Also, the long lRF allows for large apertures and thus for high vacuum conductivity. 

Frequency  

(7th 1.3 GHz sub-Harmonic)  

186 MHz 

Operation mode CW 

Gap voltage 750 kV 

Field at the cathode 19.47 MV/m 

Q0 (measured) 26500 

Shunt impedance 6.5 MW 

RF Power @ Q0 100  kW 

Peak surface field 24.1 MV/m 

Peak wall power density 25.0 W/cm2 

Accelerating gap 4 cm 

Diameter/Length 69.4/35.0 cm 

Operating pressure ~ 10-10-10-9 Torr 

16 MEDSI 2014, Melbourne 



LCLS-II 1.3 GHz Cryomodule 

Total length ~12.2 m   Nearly the final LCLS-II cryomodule design 

Cryomodules similar to EuXFEL with mods for CW operation 

50% production led by FERMI 

50% production led by J-LAB 

Baseline 16 MV/m with Q0 = 2.7x1010 

CM allows 150 Watts max cooling 

 20 MV/m gradient @ 2.7x1010 

    or 16 MV/m @ 1.8x1010  

17 MEDSI 2014, Melbourne 



SCRF Linac in SLAC Tunnel 

SLAC Linac Tunnel: 11 wide x 10 feet high - It will be a tight fit! 

 

S. Boo, J. Chan 18 

Plans for 

installation and 

servicing under 

development 

MEDSI 2014, Melbourne 
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Cryogenic Work Scope 

Jefferson Lab Work Scope 

Cryogenic Plant 

4kW @ 2.0K 

Fermilab Work Scope 

Distribution System 
(Twin Separate Disbribution Boxes) 

Distribution Boxes 
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LCLS-II Undulator Layout and Self Seeding 

MEDSI 2014, Melbourne 

32 HXU Segments 

Existing Diamond Crystal 

Self-Seeding System  

New SXR Self-Seeding 

System for High Power Loads 

21 SXU Segments 

Space for future upgrade 
Space for polarization 

upgrade 
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LCLS-II Segment and Break Section Layout. 
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Layout  shown for two individual undulator segments and three break 

sections for the HXR and SXR undulator lines.  

 

Radiation damage to magnetic material is a serious concern 

• e-beam collimation and halo control is critical 

• Program for monthly monitoring planned 

4.4 m 

3.4 m 

1.4 m 

Undulator Segment Break Section (1 m) 

Beam Position Monitor (RFBPM) 

Quadrupole (Quad) 

Horz/Vert Correctors 

Phase Shifter (PS) 

(SXU or HXU) 

Beam Loss Monitor (BLM) 

Vacuum Chamber 

Earth Field Compensation 
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Key Undulator Tolerances 

Parameter HXU SXU Unit 

DKeff/Keff  ±2.3×10-4 ±4.4×10-4 

Dyalign ±80 ±150 µm 

Dxalign ±400 ±400 µm 

First field integral range I1Bx, I1By ±40 ±40 µTm 

Second field integral range I2Bx, I2By ±50 ±50 µTm2 

Period error (rms) <25 <25 µm 

Maximum Phase Shake ±5 ±5 degXray 

Integrated sextupole field component <6.4×10-4 <3.4×10-4 mm-2 

Yaw error between strongbacks ±1.0 ±1.0 mrad 

Pitch error between strongbacks ±0.035 ±0.175 mrad 

Roll error between strongbacks ±1.75 ±1.75 mrad 

Environmental Field Error ±0.1 ±0.1 G 
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Variable Gap Hybrid Undulators – Baseline 

Strongbacks 

Frame 

Magnetic 

Structure 

Drives 

Full scale prototype nearly  

Completed as part of LCLS-IIPhase I 

M. Leitner, S. Marks 
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LCLS-II Undulator R&D 

 Two concurrent undulator R&D programs being pursued:  

• Superconducting undulator (SCU) - combined Argonne/Berkeley effort 

• Horizontal gap – vertically polarizing undulator (VPU) at Argonne 

Argonne 0.8-meter VPU 

test segment 

 

Plan to have a 3 meter 

prototype in fall 2014 

E. Gluskin, S. Prestemon, et al 
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HGVP undulator prototype  

MEDSI 2014, Melbourne 

Full scale prototype with compensated beam displacement 



Future Outlook - Facility Expansion Options 

MEDSI 2014, Melbourne 

SLAC has extensive infrastructure that will allow expansion 

• New tunnels are possible north and south of existing LCLS tunnel (complete design 

for LCLS-IIPhase I) and could be optimized for long, high pulse energy, hard X-ray 

FEL’s 

• Original research halls: ESA and ESB suitable for shorter, soft X-ray FEL’s should 

they be developed 
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